

SD Card Hacking

The Exploration and Exploitation of an
SD Memory Card

bunnie & xobs
30c3

Origin: Searching for
Fakes

Card Teardowns

Solution: managed Flash

● Small embedded controller in every
“managed Flash” device

– 8051 or ARM7 CPU

– 4-8mm^2 silicon = ~$0.15-$0.30 cost
add-on

– Compare to Flash die area = 100mm^2,
$2.90 cost

– Compare to test cost, wafer-scale tester
= $1mm = ~$0.45 for a 30 second test
(assuming 24 month lifetime and usage
24x7x365)

Faking Reliability
● Flash memory is “unreliable”

– You are not storing data, you are storing probabilistic
approximation of your data

– Workaround: computational error correction (ECC)

[intechopen.com]

Also, Bad Blocks
● TLC/MLC Flash price is < 0.1nano$/bit

– Only achievable because every piece of silicon fabricated is sold,
regardless of fabrication errors – nothing is thrown away

– Work around: bad block remapping
● In some cases, over 80% of blocks are bad (e.g. 16GiB chip sold as 2GiB)

– Also, blocks go bad with P/E cycles

[xeltek]

[theregister.co.uk]

Why do it at this layer?

● Considering:
– Flash geometry changes every 12-18 mos

● New ECC rules
● New page size, block mapping
● Intensely cost-sensitive market
● Lowest cost, highest performing Flash chips are proprietary

Application

OS

Bus controller

Device controller

Raw Flash

JFFS, YAFFS

Rainbow tables

SSD, SD, USB mass storage

The Concern
● This is the set up for a MITM attack
● What runs on the microcontroller? Can it be

hacked? Can I trust my Flash memory?

Raw Flash
Programmable
microcontrollerMy computer

Fakes Turn In; New
Quest: Hack an SD Card
● Find and hack an SD card

– Control the micro to make an LED flash, at a bare
minimum

– Challenge: no public docs available on controllers

● Our story
– Hardware tools developed to inspect, learn, and hack

SD cards

– Software tools and static code analysis to discover
back doors and controller structure

Step 1: Acquire targets

SD Cards Ahoy

Card Survey

What's inside

Easy mode decap

Taps: gen 1 monolithic

Taps Gen2

Taps: gen 2, monolithic
and discrete

Tap in-system

Tapping system diagram

FLASH
microcontroller

FLASH
memory chip

FLASH
memory emulator
(aka “Romulator”)Data sampler

(trigger on RE/WE)

FIFO to DDR3

Multi-port 800MT/s DDR3 controller

DDR3 memory (16-bit, 800MT/s, 256 MiB)

mmap()
register interface
to Novena host

Novena
Quad-core ARM

1GHz linux system

SD card

FPGA

DDR3

Linux host

FLASH memory chip is
removed or installed depending
on objective (i.e.,
observation/logging or fuzzing)

●Capabilities:
–Flash ROM emulation

●DDR3 as Flash
●Dual-port implementation,
mod and read on the fly

–Interface logging
●Trace capture of SD and
Flash interface transactions

ROM reader

Identifying a target
● Discrete implementation – more hacking options than monolithic
● SLC memory (unscrambled, trivially readable)

– Easy to check for strings:
“China Buildwin SD Controller,Anti
Japig,Author:Y/G/S/P/X Date:20087”

– Cross-check against google → Appotech controller, likely 8051
● AX211

Factory Firmware

● Initial code had to get there
somehow
– Try to get ahold of the factory's

flashing tool

Obtaining software

Obtaining software

Programming tool

Strange filenames

About the 8051

About the 8051

dd if=/dev/urandom of=firmware.bin bs=2048 count=1

About the 8051

http://www.win.tue.nl/~aeb/comp/8051/set8051.html

About the 8051

http://www.win.tue.nl/~aeb/comp/8051/set8051.html

About the AX211

About the AX211

About the AX211

Programming process

AX211 SD card
AX2005

programming jig
Windows

programmer
x86 8051 8051

Start burn

2005FM.BIN
Boot

Load SD interpreter

Open programmer

Ready

Load TestBoot.BIN

Ready
Check flash size

Load FLASH_SCAN.BIN Run flash scan, send
Result back to

hostResults
Set up programming

Load FLASH_PRO.BIN

Program firmware

Load code to RAM,
Return Okay

Done
Write firmware to

Flash

Load correct BIN file

Wait for next card

Okay

Passthru
SD

commands

SD Protocol: Hardware
● Signals:

– CMD

– DAT0 – DAT3

– CLK

● Signal integrity
– Commands use CRC7

– Data uses CRC16

● Also supports SPI mode

SD Protocol: Software
● 64 Possible Commands

– CMD0: Reset / Go Idle

– CMD10: Get CID

– CMD41: ACMD “escape”

– CMD60 – CMD63: Reserved for mfgr

● 32 bits of “argument” data

[SanDisk Product Manual V1.9]

SD Protocol: Response

[SD Simplified Layer Spec]

Fuzzing knock sequence
● 64 possible commands

– Only 4 “manufacturer” commands

– 232 possible arguments

● Fuzz sequence:
– Reset card

– Send random command/argument

– Check for a response

– No response means it may have crashed

Still works!

No success

● Huge number of possibilities
● Fuzzer can run non-interactively
● Try a different approach

– Look at the firmware burner

Programming jig

● AX2005
● Bit-banged SD

Running code
● Noticed 'APPO' in AX2005 firmware
● Preceeded by #63
● Maybe the knock is “CMD63 APPO”
● Card seems to respond

– Doesn't say “invalid command”

– Doesn't respond at all for 130 cycles

– If CRC16 is valid, card stops responding at all

Writing a debugger

● We can run code. Great!
● We don't know what to run! Darn.
● Debugger can go over SD
● We have example code

TestBoot.bin

● 512 bytes
● Easy to analyze
● Tells us entry point
● Contains SD state machine

Also, Original Card
Firmware Dump

[SD Simplified Layer Spec]

Writing a debugger

● Borrow TestBoot.bin
– Code doesn't work out of the box

● No debugger whatsoever
– Maybe we can wiggle a pin?

GPIO hunting

● Probably 1 – 3 registers
– Set/Clear register value

– Set/Clear pullup

– Set pin function

● Toggle them with some frequency

Fuzzer
● Generate an 8051 program that:

– Pokes value to a random SFR

– Delays a while

– Changes SFR value

– Delays again

– Repeat

● Read GPIO input values on host
– Watch for toggling pins

“Hello, World” that
finally worked!

fuzz:
 mov 0xef, #0x00
 acall sleep
 mov 0xef, #0xff
 acall sleep
 sjmp fuzz

sleep:
 mov R5, #0xff
 mov R6, #0x20
top_of_pause:
 djnz R5, top_of_pause
 djnz R6, top_of_pause
 ret

“Hello, World”
Observed 65 changes:
00000000 57 57 57 57 57 57 57 47 47 47 47 47 47 57 57 57 |WWWWWWWGGGGGGWWW|
00000010 57 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 |WWWWWWGGGGGGGWWW|
00000020 57 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 |WWWWWWGGGGGGGWWW|
00000030 57 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 |WWWWWWGGGGGGGWWW|
00000040 57 57 57 57 57 57 47 47 47 47 47 47 57 57 57 57 |WWWWWWGGGGGGWWWW|
00000050 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 57 |WWWWWGGGGGGGWWWW|
00000060 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 57 |WWWWWGGGGGGGWWWW|
00000070 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 57 |WWWWWGGGGGGGWWWW|
00000080 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 57 |WWWWWGGGGGGGWWWW|
00000090 57 57 57 57 57 47 47 47 47 47 47 47 57 57 57 57 |WWWWWGGGGGGGWWWW|
000000a0 57 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 |WWGGGGGGGWWWWWWW|
000000b0 57 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 |WWGGGGGGGWWWWWWW|
000000c0 57 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 |WWGGGGGGGWWWWWWW|
000000d0 57 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 |WWGGGGGGGWWWWWWW|
000000e0 57 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 |WWGGGGGGGWWWWWWW|
000000f0 57 57 47 47 47 47 47 47 57 57 57 57 57 57 57 57 |WWGGGGGGWWWWWWWW|
00000100 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 |WGGGGGGGWWWWWWWW|
00000110 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 |WGGGGGGGWWWWWWWW|
00000120 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 |WGGGGGGGWWWWWWWW|
00000130 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 |WGGGGGGGWWWWWWWW|
00000140 57 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 |WGGGGGGGWWWWWWWW|
00000150 57 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 |WGGGGGGWWWWWWWWW|
00000160 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 |GGGGGGGWWWWWWWWW|
00000170 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 |GGGGGGGWWWWWWWWW|
00000180 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 |GGGGGGGWWWWWWWWW|
00000190 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 |GGGGGGGWWWWWWWWW|
000001a0 47 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 |GGGGGGGWWWWWWWWW|
000001b0 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 57 |GGGGGGWWWWWWWWWW|
000001c0 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 47 |GGGGGGWWWWWWWWWG|
000001d0 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 47 |GGGGGGWWWWWWWWWG|
000001e0 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 47 |GGGGGGWWWWWWWWWG|
000001f0 47 47 47 47 47 47 57 57 57 57 57 57 57 57 57 47 |GGGGGGWWWWWWWWWG|

Writing a Debugger
● Bidirectional SD communications

– Send CMD with four 8-byte arguments

– Get CMD back with four 8-byte responses

● Basic commands
– peek/poke

– GPIO control

– IRQ status

– NAND emulator

– 32-bit opcodes?

● https://github.com/xobs/ax2xx-code

0xa5 “Escape” opcode

● Undefined in standard 8051
● All over the place in AX211 code
● 0xa5 0xXY
● 0xa5 0x7Y 0xWZ

8 bit or 32 bit?
● Four 32-bit registers

● “extop” debugger command
● Discovered 32-bit clr, not, inc, dec
● Many undiscovered opcodes

AX215
● Similar to AX211

● Faster, more GPIOs, different SFR map

Time for Tin Foil Hats
●Attack scenarios:

–Eavesdropping
● Report smaller than actual capacity
● Data is sequestered to hidden sectors that are uneraseable

–ToC/ToU
● Present one version of file for verification, another for execution
● Bootloader manipulation, etc.

–Selective-modify
● Scan for assets of interest, e.g. security keys, binaries, and

replace with insecure versions

Other Direction:
Samsung MMC
● Samsung pushed firmware patch to eMMC cards in Android

● Contains ARM7 code

– http://forum.xda-developers.com/showthread.php?t=2096045

– Uses “class 8” instructions reserved for manufacturer

By inspecting some code, it seems that we know how to dump the eMMC RAM:
Look at the function mmc_set_wearlevel_page in line 206. It patches the RAM (using the
method mentioned before), then it validates what it has written (in lines 255-290). Seems that
the procedure to read the RAM is as following:
1. CMD62(0xEFAC62EC) CMD62(0x10210002) to enter RAM reading mode
2. MMC_ERASE_GROUP_START(Address to read) MMC_ERASE_GROUP_END(Length
to read) MMC_ERASE(0)
3. MMC_READ_SINGLE_BLOCK to read the data
4. CMD62(0xEFAC62EC) CMD62(0xDECCEE) to exit RAM reading mode

“

”

http://forum.xda-developers.com/showthread.php?t=2096045

Other Direction: TLC
● TLC Flash has scrambling

applied to avoid “read-disturb”
and “program-disturb” issues
– Scrambling is a proprietary

algorithm, as of yet unknown

– Highly structured

Wrap-up
● SD cards contain fully programmable

microcontrollers
● Controller program modifiable via special

host commands
– Potential for MITM attack scenarios ☻

– Potential for extremely cheap microcontroller
for fun projects ☺

Special Thanks

● Shout out to .mudge for creating
CFT which enabled this research,
and many other good things (some
yet to come!)

Q&A

● Demo (time allowing)
● Thanks for your attention!

About the 8051

RAM: 0x00 - 0x7f

Registers: 0x80 - 0xff

mov 0x40, #30

0x0000 - 0xffff

mov DPTR, #0x4700
mov A, #30
movx @DPTR, A

Internal RAM External RAM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

